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J. Phys. A: Math, Gen. 17 (1984) 1625-1630. Printed in Great Britain 

Spectral properties of Schrodinger operators with matrix 
potentials 

P Seba 
Nuclear Centre, Faculty of Mathematics and Physics, Charles University, Prague, Czecho- 
slovakia 

Received 4 November 1983 

Abstract. Using perturbation theory we prove self-adjointness of a non-relativistic Hamil- 
tonian H with a wide class of matrix potentials. We also give a simple criterion based on 
the Molchanov theorem which guarantees that H has a purely discrete spectrum. 

1. Introduction 

We will study the self-adjoint operator H defined on the Hilbert space 2t = L2(R') 0 C" 
by using the differential expression 

A=-d2/dx2+ V(X) (1) 

where u ( x )  is a real symmetric n X n matrix with elements VL,(x) = ~Li (x ) - /31 , (x ) /xm~~ 

In § 1 the construction of H using the quadratic-form technique is described and 
a criterion of self-adjointness of H is formulated with the help of inequalities for 
matrix elements of V and for the exponents ai? The criterion is checked for a class 
of NN potentials (Reid 1968), that have been used for calculation of deuteron spectra. 

In § 2 we give a condition based on the Molchanov theorem (Molchanov 1953) 
which guarantees that the spectrum of H is purely discrete and using it we show that 
the spectrum of H with 44 confining potentials is of this kind. 

We use the following notation 

(a, b)" = 2 aibi a, b E C", 
i = l  

C;(R+) is the set of infinitely differentiable functions with compact support in R+, 
L2(R+)OC" is the Hilbert space of vector functions 

U = ( ~ 1 ,  ~ 2 , .  . . ,  ui E L 2 ( R + ) ,  

with the scalar product 

(U, = lom (U, v)n dx, U, VEL2(R+)OC". 
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2. Self-adjointness 

Let us define the following quadratic form 

h :  D( h )  x D ( h )  + C 

with the help of differential expression (1): 

h ( u ,  u )  = (U, A ,  U )  for all U, U E  D ( h )  

The domain D ( h )  will be specified below in such a way that h be densely defined, 
symmetric, closed and below bounded. Then by Kato's theorem (Kato 1966), there 
is a unique self-adjoint below-bounded operator H such that: 

( i )  D ( h )  2 D ( H )  and h ( u ,  U )  = (Hu ,  u)Vu E D ( H )  and all u E D ( h ) ;  
(ii) D ( H )  is a form-core for h ;  
(iii) if for some U E D( h ) ,  w E Xthe  equality h( U, U )  = (U, w )  holds for all U belong- 

ing to a form-core of h, then U E D ( H )  and Hu = w. 
H is called 'the operator associated with h' .  
Thus our next task is finding D ( h )  such that the form h has the above properties. 

The basic difficulty is the occurrence of the negative part of Vij, that is, moreover, 
singular at origin. We overcome it by applying the perturbation theory approach. The 
splitting of h into the unperturbed part hl and the perturbation h2 corresponds to the 
following decomposition of V (see (Cl ) ) :  

v =  v,+ v, ( v1 ti = vi;ISii. 

In fact we set 

where Do is the set of all uj E L2(R') such that 
(i) U, is absolutely continuous in [0, CO) 

(ii) U, E L ~ ( R + )  
(iii) uj (0 )  = O .  
It is clear that h,  is densely defined, positive and closed. In order to show that the 

form h has the same properties it is sufficient to prove that h2 is h ,  bounded with hl  
bound a < 1, i.e. there are a, b e  R, O s  a < 1, b>O such that 

Ih2(u, u)l ahi(u, U)+ b(u,  U )  

holds for all U E D(h, ) .  



Spectral properties of Schrodinger operators with matrix potentials 1627 

Theorem 1 .  Suppose there is a E [0,1) such that 

V i j ( X )  s U V j , ( X ) ,  j =  1 , 2 , .  . . , n 
i 

AE in [O,m) 

ai, = aji E [O, 2). 

Then the form h2 is hl bounded and the relative bound of h2 WRT hl equals a. 

To prove this theorem we will use the following lemma. 

Lemma. For any a > 0, a E [0,2) there exist some b 2 0 such that for all U E Do 

x- I U I dx 2 a lom u ' I dx + b lom I u 1 dx. 

holds. 

Proof. This assertion holds if Do is replaced by CT(R') c Do (see Reed and Simon 
1975 § X.5) .  Furthermore, for each U E Do there is a sequence {U,} E C,"(R+) satisfying 
~ ~ U , , - - U ~ / + O ,  ~ ~ u ~ - u ' ~ ~ + O  and u , ( x ) + u ( x )  for all x 2 0  (cf Kat0 1966 VI.4). Then 
( 2 )  follows by the Fatou lemma. 

Proof of theorem 1. Let U E D ( h l ) .  Then 

I 

I s b .  jOm ( U ;  U), dx + a [ jOm [(U'; U'), + ( U ;  VI U),] dx 

= a h , ( u ;  u)+b(u ;  U).  

Now the representation theorem can be applied to the form h and the domain of the 
self-adjoint operator H associated with h can be specified explicitly 

Theorem 2. Let V fulfil the conditions (Cl)-(C3) for some a, 0 s  a < 1 ,  and let H be 
the operator associated with h. Then the set 

U E X; uI E Do, U! absolutely continuous in [O; CO) 

I lom ( V, U, U ) , d x < CO, A U E X 

is the domain of H and Hu = Au for each U E M. 
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Proof As h, is h, bounded we have D( h )  = D( h,) and so M is the set of all U E D( h )  
such that U' is absolutely continuous in [0, CO) and Ru E X. 

(a) Let U E D ( H ) .  By the representation theorem U E D ( h )  and 

(Hu,  U )  = h( U, U )  = {(U', U'), + ( Vu, U),} dx JOX 
for all U E  C:(R+)OC", since C ~ ( R ' ) O C " c  D ( h ) .  According to (C l )  all the func- 
tions V,,(x) belong to L(a,  b )  if 0 < a < b. Furthermore, U, are continuous on (0 ,  CO) 

and thus Vu E L( a, 6 )  0 C". The same holds for w = Hu and so all the components of 

z = 1; ( w - Vu) dx' 

are absolutely continuous on any [a, b]= (0,oo). Then 

~ o ~ ~ w - V u , u ) n d x = -  JOX (z,u ') ,dx.  

By substituting into (+) one has for i = 1 , .  . . , n 

Jom(zi+u: j i j idx=O for U , E C ; ( R + ) .  

Consider P = i d ldx  on Do. This is a closed symmetric operator on L2(R') and its 
restriction PO = P t  C:(R+) fulfils PO = P. (See proof of the lemma following theorem 
1.) Now (++) can be rewritten as 

z, + U, E (Ran PO)' = ker( P i )  = Ker P+ 

and since Ker P' = IO}, we have U' = -2. Hence U' is absolutely continuous in (0, CO) 

and U"= -z '=  Vu - Hu. We have thus proved D ( H )  c M, Hu = Au for all U E ( H ) .  
(b) Let U EM. If we find w E X such that h ( u ,  U )  = (w, U)  for all U in some core 

of h, then by the representation theorem u E D ( H )  and the proof will be completed. 
But it is known (see Kato 1966; PVI.4) that C?(R+) is a core of hi obtained from 
the differential expression 

Ai = -d2/dX2 + PI, 
Now one sees that C,"(R+)O C" is a core of the form h = hl + h,, as h2 is h, bounded 
with hl  bound less than one. So in equation h(u,  U )  =(w, U )  we can assume U E  
C,"(R')OC". Now for U E M  one has AUER and h ( u ,  u ) = ( A u ,  U )  for all U E  
C;(R+)OC". 

Example. A static N-N potential 

for the isospin T = 0, the total angular momentum J = 1 and for spin S = 1 an N-N 
interaction in the energy region 0-500 MeV can be described by the potential (Reid 
1968) 
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where 

Vc=(-10.4e-"+105.5 e-2"-3181.8e-4x+9924.3 e-6*)x-' 

V,, =(708.9e-4x-2713.1 e-6x)x-1 

V, = (1 + 3/x + 3/x2) e-' - (12/x + 3/x2) e-4x( -lO/x) 

+(351.8 e-4x - 1673.5 e-6x)x-1. 

In this potential there are terms which behave like - l / x3  for x + 0'. It is known that 
Hamiltonians with such strongly singular potentials are not semibounded and so 
somehow we regularise these terms. Now if we take any regularisation of these singular 
terms which behaves like -1/x2-' for some E > 0, we can choose Vl2 = O  so that (C2) ,  
(C3) will be fulfilled. By theorem 2 the Hamiltonian HNN defined on L 2 ( R C ) O C "  
by the differential expression -d2/dx2+ VNN is self-adjoint and below bounded, its 
domain being given by theorem 2. 

3. Discrete spectrum 

In this section we find conditions under which the operator H has a purely discrete 
spectrum. This is a very important question having direct practical applications. For 
instance, if we calculate meson masses in the non-relativistic quark model we have to 
work with such Hamiltonians. 

In order to obtain such conditions, we use the perturbation theory once more. We 
have already shown that under conditions (C2), (C3) the form h2 is h, bounded and 
its hl bound a is less than one. Therefore the set 

h(x)  = h ,  + xh2; x € c ;  1x1 < l / a  
is a holomorphic class of the type 6 (see Kat0 1966). The operators H ( x )  associated 
with h(x)  constitute a holomorphic class of type B. Such a holomorphic class has the 
following stability property: the operators H (  x )  have compact resolvent (i.e. purely 
discrete spectrum) either for all x, or for no x. Hence it is sufficient to establish 
conditions for purely discrete spectrum of Ho = H ( 0 ) .  

This operator corresponds to the differential expression R I  = -d2/dx2+ VI, where 
(V,),, = 6,& Obviously H ( 0 )  equals the direct sum of 'scalar' operators H,(O) on 
L2(R') that are defined by expressions 

A l l  =-d2/dx2+ P,,(x). 
So H ( 0 )  = H,(O) + H 2 ( 0 )  +. . . + H,,(O) and for its spectrum holds u ( H ( 0 ) )  = 
U1 d H I ( 0 ) ) .  

It is evident that H ( 0 )  has a purely discrete spectrum if and only if such a spectrum 
has the operator H,(O)  for all i = 1 , .  . . , n. But the operator H,(O) is the ordinary 
scalar Schrodinger operator with positive potentials and the theorem of Molchanov 
applies. Using it we obtain 

Theorem 3. Let V fulfil conditions (Cl)-(C3) for some a E [0,1).  Then H has purely 
discrete spectrum if and only if for each i = 1 , .  . . , n and for each c > 0 holds 

r x + c  
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Example. In the non-relativistic limit the qq interaction can be described for J = 1 by 
the following potential (Beavis 1979) 

>. 
21x2- 1.4/x+2.5x -1 .212 + 0.2/x 

v,, = ( - 1 . 2 1 ~ ~  + 0 . 2 1 ~  -1. 1/x3 + 6/x2 - 1 . 3 1 ~  + 2 . 5 ~  

By performing a suitable regularisation that transforms the x - ~  and x - ~  terms to terms 
behaving like x - ' + ~  and choosing v12 = 0 we find that that the Hamiltonian H,,  defined 
on L2(R+)OC" by -d2/dx2+ V g g  is again self-adjoint and below bounded. Further 
Qll and pz2 contains the terms 2 . 5 ~  and so theorem 3 implies that H,, has a purely 
discrete spectrum. 
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